Assessment of Thiopurine–based drugs according to Thiopurine S-methyltransferase genotype in patients with Acute Lymphoblastic Leukemia
Authors
Abstract:
For the past half century, thiopurines have earned themselves a reputation as effective anti-cancer and immunosuppressive drugs. Thiopurine S-methyltransferase (TPMT) is involved in the metabolism of all thiopurines and is one of the main enzymes that inactivates mercaptopurine. 6-MP is now used as a combination therapies for maintenance therapy of children with acute lymphocytic leukemia (ALL). In all patients receiving mercaptopurine, there is a risk of bone marrow suppression. TPMT activity is inherited as a monogenic, co-dominant trait. More than 25 variants are known. Genetic testing is available for several TPMT variant alleles. Most commonly TPMT*2, *3A, and *3C are tested for, which account for >90% of inactivating alleles. Differences in DNA that alter the expression or function of proteins that are targeted by drugs can contribute significantly to variation in the responses of individuals.Genotyping may become part of routine investigations to help clinicians tailor drug treatment effectively. This success is mainly due to the development of combination therapies and stratification of patients according to risk of treatment failure and relapse, rather than the discovery of new drugs. The aim of this study was to investigate the effect of genotype or methyltransferase enzyme activity before starting therapy in children with ALL. This can prevent the side effect of thiopurine drugs. In fact, the common polymorphism of this enzyme in population could be a prognostic factor in relation to drug use and treatment of patients with ALL.
similar resources
Thiopurine S-methyltransferase phenotype-genotype correlation in children with acute lymphoblastic leukemia.
Thiopurine S-methyltransferase (TPMT) is an enzyme that catalyzes the S-methylation of thiopurine drugs such as 6-mercaptopurine, 6-thioguanine, and azathioprine. TPMT activity exhibits an interindividual variability mainly as a result of genetic polymorphism. Patients with intermediate or deficient TPMT activity are at risk for toxicity after receiving standard doses of thiopurine drugs. The a...
full textThiopurine methyltransferase genotyping in Palestinian childhood acute lymphoblastic leukemia patients
BACKGROUND The genetic polymorphism of thiopurine methyltransferase (TPMT) is well characterized in most populations. Four common polymorphic alleles are associated with impaired activity of the enzyme. These are TPMT*2 (238G>C), TPMT*3B (c.460G>A), TPMT*3A (c.460G>A and c.719A>G) and TPMT*3C (c.719A>G). The aim of the present study was to determine the frequency of TPMT polymorphisms and their...
full textGenetic Polymorphism of Thiopurine S-methyltransferase in Children with Acute Lymphoblastic Leukemia in Jordan
Background and Aims: It has been demonstrated that homozygote and heterozygote mutant allele carriers for thiopurine S-methyltransferase (TPMT) are at high risk of developing myelosuppression after receiving standard doses of 6-mercaptopurine (6-MP). The aim of this study was to determine the frequency of TPMT deficient alleles in children with acute lymphoblastic leukemia (ALL) in Jordan and t...
full textThiopurine S-methyltransferase and Pemphigus Vulgaris: A Phenotype-Genotype Study
Background & Objective: Thiopurine drugs are considered as a treatment modality in various autoimmune disorders including pemphigus vulgaris (PV). These drugs are metabolized by an enzyme “Thiopurine S-methyl transferase” (TPMT). Various variants of this enzyme may have decreased activity lead...
full textMy Resources
Journal title
volume 4 issue 1
pages 32- 38
publication date 2014-03
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023